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Abstract. A semi–microscopic model for the low–energy photodisintegration of the 9Be nucleus is con-
structed, and the experimental data are analyzed with its help. The older radioactive isotope data are
supported by this analysis. The theoretical photodisintegration cross section is derived. The astrophysical
rates for the reaction α + α + n →9Be+γ and the reverse photodisintegration of 9Be are calculated. The
new reaction rate for α+ α+ n→9Be+γ is compared with previous estimations.

PACS. 25.20.Dc Photon absorption and scattering – 25.40.Lw Radioactive capture – 97.10.Cv Stellar
structure, interiors, evolution, nucleosynthesis, ages – 21.60.Gx Cluster models – 21.45.+v Few-body
systems

I Introdution

Recently fully microscopic calculations of nuclei with A ≤
9 have become feasible [1,2]. The 9Be nucleus is such a
system of special interest, as it allows tests of theories of
interaction of composite particles [2]. The properties of
low–energy continuum of 9Be are of particular importance
in this connection. However, the corresponding experimen-
tal data on the low–energy photodisintegration of 9Be are
not in mutual agreement (see Fig. 1). In the present work
we develop a semi–microscopic model to describe the pro-
cess, and we analyze the experimental data with its help.
The model accounts simultaneously for both resonant and
non–resonant contributions to the cross section. An esti-
mation of the reliability of various data is obtained and a
theoretical photodisintegration cross section is derived.

We also calculate the reaction rates of the reaction
9Be+γ → α + α + n and the reverse reaction for astro-
physical conditions. These reaction rates are of relevance
in the high–entropy bubble in type II supernovae, an as-
trophysical site that has been suggested for the r–process
[3,4]. The baryonic matter in this bubble is dominated
in the beginning by α–particles, neutrons, and protons.
The abundance distribution shifts then to higher masses
through the recombination of the free α–particles, neu-
trons, and protons. This generates the so–called α–process
leading to the formation of massive isotopes (A ≈ 100).
The reaction path in the α–process is mainly determined
by requirements of nuclear statistical equilibrium and de-
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Fig. 1. Experimental data on the low–energy cross section
for photodisintegration of 9Be. Bremsstrahlung data: Reference
[12] (solid curve representing the fit of the authors to their
data), [11] (star representing the maximum of the spectrum;
the rest of the spectrum is not shown). Radioactive isotope
data: Reference [13] (full circles), [14] (full squares), [15] (full
diamond), [16] (open circles)

pends also on the reaction rates of the various recombi-
nation paths bridging the mass 5 and 8 gaps. It has been
shown that there are three principal reaction paths from
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4He to 12C:
(i) 4He(2α,γ)12C
(ii) 4He(αn,γ)9Be(α,n)12C
(iii) 4He(2n,γ)6He(α,n)9Be(α,n)12C.

It was shown in [4–6] that the triple–alpha process
(i) can be neglected compared to the reaction sequence
(ii) via 9Be under r–process conditions in the α–process.
Also the reaction path (iii) via 6He can be neglected for
this scenario [6,7]. This is true even if the reaction rate
of 4He(2n,γ)6He is strongly enhanced [8], because then
6He is also destroyed very effectively through photodisso-
ciation. Therefore, for the α– and r–process the reaction
4He(αn,γ)9Be plays a key role in bridging the unstable
mass gaps at A = 5 and A = 8.

The reaction rates of 4He(α n,γ)9Be and the reverse
photodisintegration of 9Be were estimated in [9] from
the experimental photodisintegration cross section. How-
ever, [9] did not include information on which experi-
mental data their estimate was based. In view of the as-
trophysical relevance of these reactions we recalculate in
the present work the rates of the first step of the reaction
(ii) above.

The same problem is also addressed in [6]. These au-
thors obtain the resonant contribution to the 9Be(γ, n)8Be
cross section from the Breit–Wigner formula for the first
excited state of 9Be with the parameters taken from [10].1
In order to calculate the non–resonant contribution they
introduce a single–particle potential with the depth cho-
sen to reproduce the ground state, calculate both ground–
and final–state continuum wave functions in this potential,
and multiply the cross section obtained by the shell–model
spectroscopic factor. They then add this cross section con-
structively or destructively to the resonant cross section to
establish possible upper and lower bounds for the reaction
rates. This procedure has certain shortcomings: a resonant
contribution to the cross section should not emerge as an
addition to the dynamic model used, since a correct quan-
tum mechanical model should necessarily contain such a
contribution itself, along with the non–resonant contribu-
tion and an interference term. Besides, the potential wells
used for the ground state and continuum state should in
fact be different: an additional spin–orbit potential, for
example, should be present in the ground p–state as com-
pared to the continuum s–state.

In our model we use a three-body specification of the
9Be bound state, and a semimicroscopic continuum wave
function which describes the essential scattering degrees
of freedom at low relative energies. In Sect. 2 this model
is formulated. In Sect. 3 the results for the 9Be(γ, n) cross
section are given. In Sect. 4 the astrophysical rates for
α+α+n→9Be+γ and the reverse reaction are calculated.

1 We note that the Γ and E0 parameters of the resonance
used in [6] seem to be incorrect. The resonant properties of
the 1/2+ state of 9Be will be considered in our future work.

II The model

The relevant experimental data on the low–energy 9Be(γ, n)
cross section are presented in Fig. 1. The available data
are those in [11,12] obtained with bremsstrahlung pho-
tons and those in [13–16] obtained from γ–radiation from
radioactive isotopes. The peak at very low energy exhib-
ited by the data of [12] is not confirmed by other groups,
and may arise from discrepancies caused by neutron en-
ergy loss in the targets [17]. The radioactive isotope tech-
niques normally provide more reliable results due to the
absence of difficulties with the energy resolution. How-
ever, the cross section can be determined only for a few
discrete photon energies with this method. This drawback
will be cured below by the use of an appropriate theo-
retical model. Our strategy will be thus to analyze the
radioactive isotope data. We shall consider the range of
energies up to 0.5 MeV above threshold.

We need to obtain the ground state and continuum
wave functions (WF) and calculate the transition matrix
element. We start with the three–body α + α + n repre-
sentation of the 9Be system. Within this representation
the WF in the c.m. system is the ααn relative motion
function times the intrinsic WFs of the two α–particles.
Since a predominant contribution to the transition matrix
element comes from distances large compared to the size
of the α–particle additional antisymmetrization may be
disregarded.2 The intrinsic α particle WFs then will drop
out from the calculation. In the following we shall refer to
the three–particle relative motion function as to the WF
of the system.

Let us denote ρ and r the distance between the α par-
ticles and that from their center of mass to the neutron,
respectively. The ground state is Jπ = 3/2−, and its WF
is of the form

Ψgs =
∑
l1l2L

φl1l2L(ρ, r)[[Yl1(ρ̂)Yl2(r̂)]Lχ1/2]J . (1)

Here χ is the neutron spin function, and the brackets [. . .]
stand for angular momentum coupling. Because of the
Pauli principle and parity requirements l1 is even, and
l2 is odd. The WF in (1) was obtained from the three–
body Schrödinger equation with αα and αn potentials
reproducing the observed two–body phase shifts. These
potentials, along with some details of the calculation, are
listed in the appendix. Practically an exact solution to the
α+α+n bound state problem is obtained, but one cannot
get the experimental binding energy with these “bare” in-
terparticle interactions. A possible reason is that the two
α–particles may distort each other in the α+α+n bound
state compared to the pure nα case. This may lead to
a change in the nα interaction. To obtain a reasonable
ground state WF the strength of the attractive central
component of the nα potential is reduced by 8% in our
calculation. This leads to values of 1.50 MeV and 2.48 fm
for the binding energy and charge radius of 9Be, suffi-

2 For example, the minor role of the antisymmetrization is
seen from the calculations of the α+ n+ p system [18]
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Fig. 2. The wave function of the 8Be resonance (solid curve)
and the “effective” n–8Be relative motion wave function in 9Be
(dashed curve). The former wave function is constructed as the
s–wave continuum solution in the αα potential (see appendix)
at the energy of 0.09518 MeV, the peak of the resonance in
this potential

ciently close to the experimental values of 1.5736 MeV and
(2.51± 0.01) fm.

Coming to the continuum wave function, we note first
that the 8Be resonance produced in the reaction may be
safely treated as a stable particle for the purposes of our
calculation. This is because its width of 7 keV is extremely
narrow on a nuclear scale. The αα continuum wave func-
tion, taken at the resonance energy and normalized to
unity in the interior region, decreases practically to zero
in the Coulomb barrier region as shown in Fig. 2 (solid
line). This function represents the WF of the resonance
extremely well and is taken as the 8Be “bound state”
wave function. Second, we argue that photodisintegration
of 9Be proceeds entirely into the 8Be+n channel. Indeed,
one can estimate that, at small energies considered, the
three–fragment α+α+n disintegration channel is strongly
suppressed due to the threshold regime. The experimen-
tal data also strongly supports the absence of this channel
[12]. At the same time, the two–fragment 4He+5He chan-
nel is still closed and ineffective due to the broad width of
5He. Thus our cross section starts from the 8Be+n thresh-
old of 1.6654 MeV. The cross section in the region between
this threshold and the ααn threshold of 1.5736 MeV is
known to be tiny [19] and will be disregarded. As in the
previous work (e.g. [20]) we confine ourselves to an s–wave
relative n8Be motion, i.e., with 1/2+ continuum states.

Predictions of the above dynamic ααn model for the
photodisintegration of 9Be depend crucially on the posi-
tion of the excited state of 9Be with respect to the thresh-
old. Preliminary three–body calculations gave us a peak
lying too high in energy, and too broad. This could not
be used for a reasonable fit to the data, so in the follow-
ing we shall formulate an alternative representation of the

continuum WF. We shall seek it in the form

Ψf =
1√
4π

φ
8Be(ρ)
ρ

1√
4π

ψsc(r)
r

χ1/2. (2)

Here φ
8Be is the intrinsic wave function of 8Be calculated

with the same αα potential as for the ground state, and
ψsc is the n8Be relative motion function, where for large
r the normalization

ψsc(r)→ sin(kr + δ) (3)

is used.
Generally speaking, the true continuum wave function

differs from (2) not only in the n8Be interaction region
but also in the outer region. However, at energies in the
vicinity of the long–living excited state of 9Be the repre-
sentation (2) should approximately be valid in the outer
region. Indeed, the decay of the long–living state into the
three–body ααn channel is inhibited due to the threshold
regime. Due to the approximate validity of the WF in (2)
in the outer region one obtains a correct energy depen-
dence of the cross section when using this WF. For small
energies the main energy dependence of the transition ma-
trix element appears as a factor in the continuum WF and
is determined by an outer part of the WF, i.e. the phase
shift. Besides, one can see below that just the outer region
(where ψsc takes the form of (3)) gives the biggest contri-
bution to the transition matrix element. One can therefore
hope that a WF of the form of (2) suffices for the fitting
purpose in the whole energy range considered.

We seek the relative motion function ψsc as a solution
to the relative motion Schrödinger equation with some
potential whose parameters are chosen from a fit of the
theoretical cross section to the data. Taking into account
that the s–wave αn repulsion and the p–wave αn attrac-
tion have comparable ranges one can assume a smooth
attractive potential. The Woods–Saxon family

V (r) = −V0

(
1 + e

r−R
a

)−1

(4)

will be adopted below as a good representative.
Consider now the representation of the photodisinte-

gration cross section in our model. The matrix element of
the dipole transition operator (4/9)er between the WFs
in (1) and (2) has to be calculated. After integrating over
ρ the matrix element reduces to the overlap between the
n8Be relative motion functions, namely the scattering func-
tion entering (2) and the “effective bound state WF”

r−1ψb(r)[Y1(r̂)χ1/2]J=3/2 (5)

obtained from (1):

r−1ψb(r) =
∫ ∞

0

φ011(ρ, r)ρdρφ
8Be(ρ). (6)

Using (2), (6) the cross section is of the same form as
in the single–particle case. The total (s–wave) photodisin-
tegration cross section is calculated in the simple form

σ = (2/3)6π(e2/h̄c)(2µ/h̄2)Eγk−1I2, (7)

where I =
∫ ∞

0

ψb(r)ψsc(r)rdr. (8)
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Here µ is the n8Be reduced mass, and (h̄k)2/(2µ) is the
excitation energy Eγ −Eth that will be denoted as E be-
low. In case of a single–particle description of the process,
i.e., the “valence neutron” model, (7) is valid with the
bound–state WF normalized to unity, while in our case
(see below) ∫ ∞

0

ψ2
b(r)dr = 0.43. (9)

It is implied here and in (7) that the 8Be and 9Be ground
state wave functions are normalized to unity. The function
ψb(r) is shown in Fig. 2 (dashed line).

III The photodisintegration cross section

In [21] the data at the energies up to 185 keV above
threshold (Eγ ≤ 1.85 MeV) from [13,14] were reproduced
at a qualitative level within the following framework. The
valence neutron model with Woods–Saxon type potentials
was used. The results obtained in this way were multiplied
by some constant factors less than unity, so called “reduc-
tion factors”, to approach the experimental cross section.
To obtain the continuum wave function the depth of the
potential was varied while the radius and diffuseness pa-
rameters were taken the same as for the central component
of the potential in the bound state calculation. Two fits
were found, one with a reduction factor of 0.53 leading
to a weakly bound 8Be+n 1/2+ state, and the other one
with a reduction factor of 0.31 leading to a virtual state.
The first possibility was once preferred in view of the re-
sults of [22]. In that work a two channel 8Be+n model of
the ground state of 9Be was introduced to cure the single–
particle description [20] of photodisintegration. The 8Be
subsystem was allowed to be in the ground and first ex-
cited state, and that led to the reduction factor of 0.5 or
0.6 in the cross section depending on the assumptions. In
[23] the reduction factor of 0.56 was found for that model.
In contrast to [21] our results below definitely testify to a
virtual 8Be+n 1/2+ state. This is probably due to a more
realistic treatment of the ground state of 9Be in our model.
In fact the reduction factors obtained in the two–channel
model of the ground state of 9Be [22] should be used in
conjunction with the channel coupling n+8Be dynamics,
instead of using [21] single–channel dynamics.

In [24] the same data were fitted with the line shape√
E(E + Ē)−2. This shape was derived incorrectly from

the Breit–Wigner cross section under the assumption that
the 1/2+ level of 9Be is a bound or virtual 8Be+n state.
In [25] the data of [16] were fitted with a one–level R–
matrix approximation. The fit leads to a complex–energy
resonant state [25] and the real part of the complex energy
proves to be negative.

First we shall analyze the data of [13–15] (full cir-
cles, full squares, and full diamond in Fig. 1). A search
of the parameters V0, r, and a of the potential (4) giving
an acceptable fit to the data is performed. Several local
minima of the quantity χ2 in the space of the parameters
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Fig. 3. Calculated cross sections for the photodisintegration of
9Be. Solid and dashed curves are obtained with the parameters
(10) and (11), respectively. Dotted curve corresponds to the
alternative method listed in the paragraph after Eq. (11). The
experimental data are as in Fig. 1

are found. One of them is provided by

V0 = 35.99 MeV, R = 3.126 fm, a = 0.8108 fm.
(10)

These values seem to be very reasonable. For this set the
X = χ2/(degrees of freedom) value equals 0.62. Another
one is obtained with the parameters

V0 = 52.86 MeV, R = 2.006 fm, a = 1.051 fm (11)

giving X = 0.525. Several other minima also exist with
sizable higher but still acceptable X values. In Fig. 3 the
photodisintegration cross sections obtained with the pa-
rameters (10) and (11) are shown as the solid and dashed
curve, respectively. The two cross sections prove to be
quite close to each other. To clarify partially the reason for
this we note that the biggest contribution to the matrix
element of (8) comes from the distances beyond the range
of the potential. The distances larger than 5 fm in (8) pro-
vide 60-70% contribution to the cross section, and at such
distances the wave functions deviate from the asymptotic
ones, (3), by not more than 10% (except for regions in
the vicinity of zeros). The asymptotic wave functions are
determined by the phase shifts i.e., predominantly by the
scattering length a and the effective range r0. Therefore
the procedure is equivalent to some degree to fitting a
and r0 values. Once this is done, the cross sections are not
very dependent on the particular set of the potential pa-
rameters. The a and r0 values are −27.6 fm and 8.79 fm,
respectively, for the set (10), and −28.4 fm and 9.77 fm
for the set (11). All the other above mentioned sets of po-
tential parameters giving local minima to X lead to very
similar a and r0 values. However considerable changes in
the scattering WF inside the potential can influence the
results, see the next paragraph.

The following way to interpolate between the data has
also been tried. Let us denote by σ0(E) the cross section



V.D. Efros et al.: Low–energy photodisintegration of 451

obtained in case when the right–hand side of (3) is used as
a continuum wave function for all r values. This cross sec-
tion has been calculated taking δ from the effective range
expansion with the a and r0 values given by the poten-
tial (10). Let us represent σ as c(E)σ0(E) and fit c(E) to
experiment. It is hoped that, in contrast to σ, the factor
c(E) behaves in a smooth way and thus can be reliably
obtained from an interpolation procedure. Indeed, the be-
havior of both σ and σ0 can be approximately described by
the resonant factor k−1 sin2 δ times a slowly varying func-
tion. Even a fit with c(E) = const = 0.55 proves to pro-
vide a sufficiently low X value. The cross section obtained
with this c is shown in Fig. 3 as the dotted curve. Presum-
ably this procedure provides less accurate results than the
previous one. Of course, the energy dependence k−1 sin2 δ
is not accurate enough in the whole energy range, as a
comparison with the exact solution for the potential (10)
shows. Hence c(E) should include an energy dependence,
but this could not be determined because of experimental
uncertainties.

Next we applied the procedure to the data of [16]
(open circles in Fig. 1). Three local minima with accept-
able X values are found. However the parameters of the
potential corresponding to all of them:

V0 = 11.0 MeV, R = 2.35 fm a = 0.258 fm
V0 = 6.49 MeV, R = 3.10 fm a = 0.260 fm (12)
V0 = 15.8 MeV, R = 1.37 fm a = 0.958 fm

prove to be rather unrealistic. There exists one more dif-
ference between these potentials and those in (10) and
(11). The latter potentials, as well as the other potentials
(4) providing a good fit to the same data, support one
deeply bound state and one state close to being bound.
On the contrary, the potentials (12) support only one very
weakly bound state. An existence of one deeply bound s–
level in the neutron mean field in the 9Be nucleus, or,
equivalently, one node in the low–energy scattering wave
function inside the potential, seems to be natural from the
shell–model point of view. We think this point of view is
sufficient to establish the correct number of nodes for the
neutron motion inside the Woods–Saxon potential, even
for such a clusterized system. In the α–particle oscillator
model of 9Be [26], for example, the first allowed neutron
s–state contains a substantial admixture of the nodeless
0s function, but this leads not to a disappearance but
only to a shift of the node. If one admits that the state
considered is a mixture of 0s and 1s oscillator functions
then there exists just one node located within the dis-
tance of 3 fm from the origin. Therefore we conclude that
in the region where various data sets differ from each other
the older radioactive isotope data are preferable. We also
note that the cross section we obtain with potentials (10)
and (11) for the highest energies considered, being lower
than the fitted datum of Ref. [15], agrees well with the
bremsstrahlung Jacobson data [11].

IV The astrophysical reaction rates

The 9Be+γ → α+α+n reaction rate per nucleus per time
unit is calculated via the usual averaging the elementary
photodisintegration cross section σ(Eγ)c with the approx-
imate, or Wien distribution for the photon density,

λγ = cπ−2(h̄c)−3

∫ ∞
Eth(8Be)

σ(Eγ)E2
γ exp(−Eγ/kT )dEγ ,

(13)
where Eth(8Be) = 1.6654 MeV. The rate of the reverse
reaction (the number of reactions per time unit per unit
volume) is

P (ααn) = (1/2)n2
αnn〈ααn〉, (14)

where nα and nn are numbers of particles per unit volume.
The reaction constant 〈ααn〉 is obtained from (13) using
the reverse ratio RR [9,27]:

N2
A〈ααn〉 = λγ/RR, (15)

RR = 5.84 · 1019T 3
9 exp(−18.261/T 9). (16)

Here NA is Avogadro’s number, T9 is the temperature
in 109 K, 18.261/T 9 = Eth(ααn)/kT with Eth(ααn) =
1.5736 MeV, and it is implied that the quantities (13) and
(15) are given in sec−1 and cm6 sec−1 mole−2, respec-
tively. Use of the Wien distribution instead of the exact,
or Planck, one, i.e. [exp(Eγ/kT )− 1]−1 → exp(−Eγ/kT ),
allows application of the above listed simple reverse ratio
theory. For temperatures of T9 = 5 and 10, for example,
it gives the reaction constant (13) with relative errors of
1 % and 5.4 %, respectively. For Eγ ≤ 2.2 MeV the cross
section σ(Eγ) obtained in the preceding section with the
potential (10) is used. For Eγ from 2.2 MeV up to 5 MeV
the Jacobson bremsstrahlung data [11] are used. The for-
mer energy region provides 96% and 62% contribution to
the cross section for T9 = 2 and 5, respectively. The contri-
bution from energies Eγ higher than 5 MeV reaches 0.3%
and 6.7% for T9 = 5 and 8, respectively.

The values of the rate (15) obtained can be represented
by the fit

N2
A〈ααn〉 = 6.59× 10−6T

−3/2
9

exp[−(1.0653/T9)]

(
1 +

7∑
n=1

anT
n
9

)−1

(17)

with

a1 = 3.3562 a2 = −0.86389 a3 = 0.42268
a4 = −0.14913 a5 = 2.7039× 10−2

a6 = −2.4000× 10−3 a7 = 8.3223× 10−5

The fit reproduces our N2
A〈ααn〉 values with an accu-

racy better than 1% at any T9 in the range 0.1 ≤ T9 ≤
8. In (17) 1.0653/T9 = [Eth(8Be) − Eth(ααn)]/kT . The
factor T−3/2

9 exp[−(1.0653/T9)] represents the asymptotic
behavior of the 8Be formation contribution to the rate
when T9 tends to zero.
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Table 1.

T [109 K] N2
A〈ααn〉

Present work [9] [6] (destructive) [6] (constructive)

0.2 0.21·10−6 0.30·10−6 — —
0.5 0.87·10−6 1.1·10−6 0.55 · 10−6 0.61 · 10−6

1.0 0.60·10−6 0.67·10−6 0.32 · 10−6 0.44 · 10−6

2.0 0.23·10−6 0.23·10−6 0.12 · 10−6 0.20 · 10−6

3.0 0.12·10−6 0.99·10−7 0.60 · 10−7 0.11 · 10−6

4.0 0.73·10−7 0.52·10−7 — —
5.0 0.51·10−7 0.31·10−7 0.26 · 10−7 0.52 · 10−7

In the Table our values for the three–body reaction
rate (15) are compared with those of [9] and those of
[6] where constructive or destructive interference between
the resonant and non–resonant contributions at energies
above the resonance energy was assumed.

Summarizing, we have constructed a semi–microscopic
model for the low–energy photodisintegration of the 9Be
nucleus and have analyzed the experimental data with its
help. Our analysis supports the older radioactive isotope
data. The theoretical cross section we derived may be com-
pared with future microscopic calculations of the process.
We have calculated the astrophysical rates for the reac-
tion α+α+n→9Be+γ and the reverse reaction. Our new
reaction rates agree at T9 = 2.0 with the ones given in
[9]. They are somewhat smaller (larger) for lower (higher)
temperatures than T9 = 2.0. The reaction rates given in
[6] agree much better with our reaction rate at higher tem-
peratures if one assumes in Ref. [6] constructive (destruc-
tive) interference between the resonant and non–resonant
contributions at energies above (below) the resonance en-
ergy.
We are indebted to J.S. Vaagen and J.M. Bang for very
fruitful comments. This work was supported partially by
the the Fonds zur Förderung wissenschaftlichen Forschung
in Österreich (project P10361–PHY) and the Russian Foun-
dation for Basic Research (grant no 97-02-17003).

V Appendix

In our calculation of the ground state of 9Be the αα po-
tential is taken in the form [28]

VR exp[−(µRρ)2]− VA exp[−(µAρ)2]

with VA = 130 MeV, µA = 0.475 fm−1, µR = 0.7 fm−1,
and VR = 500, 320, and 10 MeV for l=0, 2, and 4, respec-
tively. The Coulomb αα interaction is also added. The nα–
interaction in s–, p–, and d–states is taken into account.
As in many previous studies [30] the s–wave repulsive po-
tential V exp[−(r/R)2] with V = 50 MeV and R = 2.3 fm
is used. The initial potential in p– and d–states [29] in-
cludes central and spin–orbit components:

V (r) = −V
(
1 + e

r−R
a

)−1

− U l · s 1
r

d

dr

(
1 + e

r−R1
a1

)−1

with V = 43 MeV, R = 2 fm, a = 0.7 fm, U = 40 MeV fm2,
R1 = 1.5 fm, and a1 =0.35 fm. The parameter V is re-
duced to 39.6 MeV in the present three–body calculation,
in order to reproduce the empirical g.s. energy.

The three–body dynamic equation is written in the
form of the Faddeev differential equations and each Fad-
deev component is expanded over hyperspherical harmon-
ics and hyperradial basis functions. Using the Raynal–
Revai rotations of hyperspherical harmonics3 the matrix
elements are reduced analytically to two–dimensional in-
tegrals. The equations are projected onto subspaces of the
basis functions retained that reduces the problem to the
algebraic eigenvalue problem. The number of basis func-
tions retained is quite high and ensures the adequate con-
vergence of the calculation.
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